Parcel Fetching#
Retrieve building parcels from various sources.
- shift.parcels_from_geodataframe(geo_df: GeoDataFrame) list[ParcelModel]#
Function to convert geopandas dataframe to list of parcel models.
- Parameters:
geo_df (GeoDataFrame) – Geo dataframe.
- Returns:
list[ParcelModel]
- shift.parcels_from_location(location: str | ~shift.data_model.GeoLocation | list[~shift.data_model.GeoLocation], max_distance: ~infrasys.quantities.Distance = <Quantity(500, 'meter')>) list[ParcelModel] | None#
Function to return parcels for a given location.
Note max_distance is not used if location type is Polygon. For a location of type str and GeoLocation, a polygon is created by forming a sqaure bounding box using max distance. We use osmnx package to fetch these buildings.
- Parameters:
location (str | GeoLocation | Polygon) – Location for which openstreet parcels are to be fetched.
max_distance (Distance) – Maximum distance to form a bounding box within which buildings are fetched.
- Returns:
List of ParcelModel.
- Return type:
list[ParcelModel]
Examples
>>> from shift.parcel.openstreet import get_parcels >>> from infrasys.quantities import Distance >>> get_parcels("Fort Worth, Texas", Distance(100, "m"))
- shift.parcels_from_csv(file_path: Path)#
Function to load parcels from csv.
Note, this function uses geopandas to construct geo dataframe which requires that you have at least a column named geometry in your file.
- Parameters:
file_path (Path to csv file with geometries.)